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Abstract 

 
This study details data-driven findings based on actual operational high-frequency sensor data of over 
20 Crude Oil Tankers owned by Euronav, with the goal of deciding between STW (Speed-Through-
Water) or SOG (Speed-Over-Ground) as a starting point for accurate ship performance modeling.  
 

1. Introduction 

 
Efficiency gains are the go-to answer to reach short-term decarbonization targets in shipping. Accurate 
speed-fuel models of vessels are a prerequisite to capture these efficiency gains. The challenge of 
creating accurate speed-fuel models - also called ship performance models - lies not only in accounting 
for all the secondary factors influencing this relationship (waves, wind, currents, draft, trim, water 
depth, etc.), but also in getting accurate data on the crucial variables speed and fuel.  
 
The rise of telemetry equipment and high-frequency data collection on-board vessels has enabled many 
improvements for ship performance modeling, DeKeyser et al. (2022). Nevertheless, with sensor data, 
an even more critical mindset is necessary to decide what data can be trusted. Especially when it comes 
to the speed of the vessel, a dilemma often ensues to choose for Speed-Over-Ground (SOG) data based 
on GPS-location or to choose for Speed-Through-Water (STW) data based on the speed log. 
 

 
 
This study analyzes data from 20 oil tankers (V1-V20) to find a data-driven answer to the above 
dilemma. Should we use SOG or STW as a starting point for performance modeling? What options do 
we have and how can we maximize performance modeling accuracy? The 20 vessels are VLCC’s and 
Suezmax’s. On average we analyzed 1 year of sensor data for every ship. The data consists of 
measurements at 5-minute intervals. 
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2. Difference between SOG and STW 

 
In theory the difference between SOG and STW should only be due to currents. As a result, the 
following formula is often used to convert SOG into STW: 
 

 
 
The factor “current_speed * cos(heading - current_direction)” is also referred to as Current Product 
(CP), as it represents the vector component of the currents in the direction  of the ship. 
 
3. Inaccuracies for different SOG to STW models 
 
Put simply, we have two different approaches to calculate the STW: 
 

1. Simple:   STW = SOG 
2. Current Formula:  STW = SOG + Current Product (CP) 

 
For the 20 vessels, this generates the following results, on average.  
A table with all 20 ship-specific results can be found in Appendix A. 
For more information on the accuracy metrics, please refer to the Blue Modeling Standard,  
Deschoolmeester and Morobé (2023). 
 

Acc. Metric STW = SOG STW = SOG + CP 

MAPE 6.05% 5.25% 

Voyage Error 3.66% 3.73% 

R2 0.65 0.71 

Average scores over 20 vessels 

Unexpectedly, the second approach with the correction factor for currents barely outperforms the first 
very simple approach. For the voyage error, it even worsens. This means that the Current Product (CP) 
has very limited explaining power. This is an unexpected finding, as in theory the CP should explain 
all the differences between SOG and STW. 
 
Given these findings, we might need to reframe the question. Is the approach to predict STW incorrect, 
or is the value we are trying to predict incorrect? Given the known flaws of speed log sensors to measure 
STW accurately, Ikonomakis et al. (2021), a likely answer could be that STW values are simply 
inaccurate. 
 
The second part of this study explores the following hypothesis: if the inaccuracy is really due to 
inaccurate STW measurements, rather than an incorrect formula to predict STW from SOG, then this 
will be reflected in end-to-end SOG to Power modeling accuracy. Or in other words, it might be that 
the formula above predicts close to the ‘true STW value’ of the vessel, but that the measured STW value 
we validate against is simply inaccurate. If this is true, then if we would predict from SOG all the way 
to the Main Engine Power of the vessel, it would be more accurate to start modeling from a calculated 
STW instead of the measured STW. This hypothesis is tested below. 
 

4. Impact of the STW inaccuracies on Speed-to-Power modeling 
 
To validate the hypothesis above, we model the Main Engine Power, starting from SOG in three 
different ways. All three use the same modeling approach: physics-informed machine learning in 
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Toqua’s proprietary Ship Kernels, Collé and Morobé (2022). The only difference is what version of the 
STW is used as starting point. 
 

1. Traditional: Measured STW - Train Power model starting from measured STW. Generate STW 
from SOG + CP. 

2. Simple: SOG - Train Power model starting from SOG. No current corrections, so STW=SOG. 
3. Current formula: Calculated STW - Train Power model starting from calculated STW = SOG 

+ CP. 
 

 
Diagram: speed→power accuracy as a proxy to uncover the closest estimate of ‘true STW’ 

 
It is expected that the closer the approach gets to the ‘true STW value’, the more accurate the end-to-
end SOG→Power model will be. The ‘true STW value’ is unknown, so the end-to-end speed-to-power 
accuracy serves as a proxy for which approach is most accurate  to predict the ‘true STW value’. 
 

 
 
For the 20 vessels and these 3 different starting points, this generates the following results, on average. 
A table with all 20 ship-specific results can be found in Appendix B. 
 

Acc. Metric Measured STW SOG Calculated STW 

MAPE 15.43% 14.15% 11.46% 

Voyage Error 8.33% 4.22% 3.12% 

R2 0.49 0.54 0.67 

Average scores over 20 vessels 
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Using SOG instead of measured STW reduces voyage accuracy from 8.3% to 4.2%. Using calculated 
STW instead of measured STW, reduces voyage inaccuracy from 8.3% to 3.1%. 
 
This confirms the earlier hypothesis. Training a model from the measured STW leads to large 
inaccuracies. Much larger than if you would simply take SOG or calculated STW as input. However, 
most scores for the measured STW scenario are not that much worse than the other scenarios. It is just 
that some vessels (V2, V5, V14, V18, V19) have exceptionally large voyage errors for the measured 
STW scenario (12%-32%); as a result the measured STW scenario drastically underperforms on 
average. This is caused by inaccurate speed logs, which are drastically more erroneous on some ships 
than on others. This confirms the hypothesis that measured STW values are often less accurate than 
calculating STW starting from SOG. This was proven indirectly by using end-to-end speed-to-power 
modeling accuracy as a proxy. 
 
In some cases (V7, V9, V10, V11, V20) the measured STW scenario outperforms the other scenarios. 
This indicates that in some cases the STW does capture meaningful information that goes beyond what 
SOG and correction factors can account for. We believe these cases have highly accurate and well-
calibrated speed logs. But they are the exception, not the rule.  
 

 
 
5. Conclusion 
 
After analyzing operational sensor data for 20 oil tankers, to analyze if SOG or STW is the best starting 
point for accurate performance modeling, we find that measured STW values are unreliable. Using them 
leads to large average inaccuracies for performance modeling (8.3% voyage error). Instead, using the 
more reliable SOG already reduces the voyage error to 4.2%. If we then go a step further, and not simply 
use SOG, but apply correction factors for currents to derive a calculated STW, the voyage inaccuracy 
further reduces to 3.1%. By using end-to-end modeling as a proxy, these numbers indirectly confirm 
the hypothesis that STW sensors are unreliable. The most robust estimation of the true STW value is 
found via a formula based on SOG and currents, rather than measurement devices.  
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Appendices 

 

A) SOG-STW table for all 20 vessels 

 

i. MAPE 

 

Vessel SOG=STW MAPE Current formula MAPE 

V1 4.33% 4.02% 
V2 10.17% 9.81% 

V3 6.86% 5.99% 
V4 5.68% 5.09% 

V5 6.77% 5.37% 
V6 5.53% 4.11% 

V7 5.74% 3.97% 

V8 5.01% 3.80% 
V9 3.52% 3.23% 

V10 3.84% 3.55% 
V11 6.66% 5.47% 

V12 3.96% 3.09% 
V13 4.07% 3.59% 

V14 10.23% 9.38% 
V15 5.15% 4.14% 

V16 5.06% 4.41% 
V17 5.36% 4.61% 

V18 8.88% 8.68% 
V19 10.91% 9.65% 

V20 3.18% 2.97% 
Average 6.05% 5.25% 

 

ii. Voyage Error 

 

Vessel SOG=STW Voyage Error Current formula Voyage Error 

V1 1.59% 2.37% 

V2 9.93% 10.61% 

V3 3.38% 3.90% 

V4 3.44% 3.81% 

https://toqua.ai/uploads/default/HullPic2022_Toqua_Proceedings.pdf
https://arxiv.org/pdf/2212.13061.pdf
https://toqua.ai/whitepapers/how-to-compare-different-ship-performance-models
https://toqua.ai/whitepapers/how-to-compare-different-ship-performance-models
https://www.mdpi.com/2077-1312/9/5/465
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V5 3.44% 4.05% 

V6 1.41% 1.21% 

V7 1.11% 0.68% 

V8 1.99% 2.28% 

V9 1.06% 0.89% 

V10 0.97% 0.93% 

V11 4.23% 3.47% 

V12 1.70% 1.16% 

V13 2.37% 1.65% 
V14 9.64% 9.92% 

V15 2.38% 2.45% 
V16 1.78% 2.71% 

V17 3.49% 2.82% 
V18 7.98% 8.94% 

V19 9.56% 9.59% 

V20 1.72% 1.23% 
Average 3.66% 3.73% 

iii. R2 

 

Vessel SOG=STW R2 Current formula R2 

V1 0.76 0.80 
V2 -0.21 -0.11 

V3 0.48 0.62 
V4 0.65 0.73 

V5 0.60 0.77 
V6 0.76 0.88 

V7 0.78 0.90 
V8 0.77 0.88 

V9 0.82 0.88 
V10 0.77 0.83 

V11 0.55 0.71 
V12 0.68 0.83 

V13 0.81 0.86 
V14 0.34 0.45 

V15 0.66 0.78 
V16 0.66 0.77 

V17 0.73 0.81 

V18 0.45 0.49 
V19 -0.65 -0.21 

V20 0.83 0.83 
Average 0.65 0.71 

   

B) SOG-Power table for all 20 vessels 
 

i. MAPE 

 

Vessel Measured STW MAPE SOG MAPE Calculated STW MAPE 
V1 10.39% 12.05% 10.84% 

V2 32.23% 12.52% 9.80% 
V3 12.97% 13.22% 9.57% 

V4 12.69% 13.37% 10.54% 
V5 21.97% 18.36% 15.98% 

V6 12.30% 19.32% 11.50% 
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V7 12.42% 18.81% 12.71% 
V8 12.94% 18.64% 11.77% 

V9 12.01% 14.11% 12.96% 
V10 12.60% 14.27% 12.91% 

V11 11.27% 11.29% 10.16% 
V12 8.76% 10.08% 8.74% 

V13 11.19% 11.32% 9.99% 
V14 22.26% 15.44% 13.14% 

V15 14.12% 14.35% 11.39% 
V16 13.56% 13.35% 12.13% 

V17 14.50% 14.53% 12.20% 
V18 26.61% 15.96% 12.60% 

V19 23.77% 10.58% 9.52% 
V20 10.02% 11.41% 10.70% 

Average 15.43% 14.15% 11.46% 

 

  



207 

ii. Voyage Error 

 
Vessel Measured STW Voyage Error SOG Voyage Error Calculated STW Voyage Error 

V1 3.48% 3.48% 2.74% 
V2 32.19% 4.76% 3.51% 

V3 3.71% 0.05% 0.32% 
V4 5.74% 4.03% 3.70% 

V5 18.20% 5.78% 5.99% 
V6 4.44% 8.16% 2.40% 

V7 2.12% 8.54% 4.12% 

V8 7.76% 5.11% 2.32% 
V9 4.15% 5.42% 5.02% 

V10 4.90% 8.47% 6.63% 
V11 1.41% 2.27% 5.33% 

V12 1.83% 1.18% 0.14% 
V13 3.75% 0.37% 1.31% 

V14 11.85% 6.59% 4.72% 
V15 5.54% 2.28% 2.39% 

V16 4.74% 2.75% 0.53% 
V17 6.06% 6.16% 4.22% 

V18 22.70% 2.19% 1.91% 
V19 21.32% 4.64% 2.85% 

V20 0.77% 2.11% 2.31% 
Average 8.33% 4.22% 3.12% 

 
iii. R2 

 
Vessel Measured STW R2 SOG R2 Calculated STW R2 

V1 0.29 0.31 0.37 
V2 -0.19 0.82 0.87 

V3 0.70 0.75 0.82 
V4 0.75 0.67 0.80 

V5 0.16 0.57 0.63 
V6 0.79 0.58 0.84 

V7 0.76 0.59 0.78 
V8 0.75 0.61 0.83 

V9 0.46 0.21 0.42 

V10 0.63 0.57 0.65 
V11 -0.01 0.13 0.37 

V12 0.40 0.29 0.54 
V13 0.86 0.86 0.89 

V14 0.14 0.34 0.52 
V15 0.72 0.70 0.81 

V16 0.76 0.78 0.83 
V17 0.29 0.24 0.51 

V18 0.38 0.69 0.81 
V19 -0.41 0.72 0.75 

V20 0.39 0.29 0.36 
Average 0.49 0.54 0.67 

 


